On the Convergence of Shock-capturing Streamline Diffusion Finite Element Methods for Hyperbolic Conservation Laws

نویسندگان

  • CLAES JOHNSON
  • ANDERS SZEPESSY
  • PETER HANSBO
چکیده

We extend our previous analysis of streamline diffusion finite element methods for hyperbolic systems of conservation laws to include a shockcapturing term adding artificial viscosity depending on the local absolute value of the residual of the finite element solution and the mesh size. With this term present, we prove a maximum norm bound for finite element solutions of Burgers' equation and thus complete an earlier convergence proof for this equation. We further prove, using entropy variables, that a strong limit of finite element solutions is a weak solution of the system of conservation laws and satisfies the entropy inequality associated with the entropy variables. Results of some numerical experiments for the time-dependent compressible Euler equations in two dimensions are also reported.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of a Shock-Capturing Streamline Diffusion Finite Element Method for a Scalar Conservation Law in Two Space Dimensions

We prove a convergence result for a shock-capturing streamline diffusion finite element method applied to a time-dependent scalar nonlinear hyperbolic conservation law in two space dimensions. The proof is based on a uniqueness result for measure-valued solutions by DiPerna. We also prove an almost optimal error estimate for a linearized conservation law having a smooth exact solution.

متن کامل

On the Convergence of a Finite Element Method for a Nonlinear Hyperbolic Conservation Law

We consider a space-time finite element discretization of a time-dependent nonlinear hyperbolic conservation law in one space dimension (Burgers' equation). The finite element method is higher-order accurate and is a Petrov-Galerkin method based on the so-called streamline diffusion modification of the test functions giving added stability. We first prove that if a sequence of finite element so...

متن کامل

On the Convergence of a Shock Capturing Discontinuous Galerkin Method for Nonlinear Hyperbolic Systems of Conservation Laws

Abstract. In this paper, we present a shock capturing discontinuous Galerkin (SC-DG) method for nonlinear systems of conservation laws in several space dimensions and analyze its stability and convergence. The scheme is realized as a space-time formulation in terms of entropy variables using an entropy stable numerical flux. While being similar to the method proposed in [14], our approach is ne...

متن کامل

Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws

We present a streamline diffusion shock capturing spacetime discontinuous Galerkin (DG) method to approximate nonlinear systems of conservation laws in several space dimensions. The degrees of freedom are in terms of the entropy variables and the numerical flux functions are the entropy stable finite volume fluxes. We show entropy stability of the (formally) arbitrarily high order accurate meth...

متن کامل

Convergence of a residual based artificial viscosity finite element method

We present a residual based artificial viscosity finite element method to solve conservation laws. The Galerkin approximation is stabilized by only residual based artificial viscosity, without any least-squares, SUPG, or streamline diffusion terms. We prove convergence of the method, applied to a scalar conservation law in two space dimensions, toward an unique entropy solution for implicit tim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010